961 research outputs found

    Contemporary challenges to iodine status and nutrition: the role of foods, dietary recommendations, fortification and supplementation

    Get PDF
    Iodine deficiency (ID) in women of childbearing age remains a global public health concern, mainly through its impact on fetal and infant neurodevelopment. While iodine status is improving globally, ID is still prevalent in pregnancy, when requirements increase. More than 120 countries have implemented salt iodisation and food fortification, strategies that have been partially successful. Supplementation during pregnancy is recommended in some countries and supported by the WHO when mandatory salt iodisation is not present. The UK is listed as one of the ten countries with the lowest iodine status globally, with approximately 60 % of pregnant women not meeting the WHO recommended intake. Without mandatory iodine fortification or recommendation for supplementation in pregnancy, the UK population depends on dietary sources of iodine. Both women and healthcare professionals have low knowledge and awareness of iodine, its sources or its role for health. Dairy and seafood products are the richest sources of iodine and their consumption is essential to support adequate iodine status. Increasing iodine through the diet might be possible if iodine-rich foods get repositioned in the diet, as they now contribute towards only about 13 % of the average energy intake of adult women. This review examines the use of iodine-rich foods in parallel with other public health strategies, to increase iodine intake and highlights the rare opportunity in the UK for randomised trials, due to the lack of mandatory fortification programmes

    Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - Impact of physical parameters and triaxiality

    Full text link
    Dwarf spheroidal (dSph) galaxies are among the most promising targets for the indirect detection of dark matter (DM) from annihilation and/or decay products. Empirical estimates of their DM content - and hence the magnitudes of expected signals - rely on inferences from stellar-kinematic data. However, various kinematic analyses can give different results and it is not obvious which are most reliable. Using extensive sets of mock data of various sizes (mimicking 'ultra-faint' and 'classical' dSphs) and an MCMC engine, here we investigate biases, uncertainties, and limitations of analyses based on parametric solutions to the spherical Jeans equation. For a variety of functional forms for the tracer and DM density profiles, as well as the orbital anisotropy profile, we examine reliability of estimates for the astrophysical J- and D-factors for annihilation and decay, respectively. For large (N > 1000) stellar-kinematic samples typical of 'classical' dSphs, errors tend to be dominated by systematics, which can be reduced through the use of sufficiently general and flexible functional forms. For small (N < 100) samples typical of 'ultrafaints', statistical uncertainties tend to dominate systematic errors and flexible models are less necessary. We define an optimal strategy that would mitigate sensitivity to priors and other aspects of analyses based on the spherical Jeans equation. We also find that the assumption of spherical symmetry can bias estimates of J (with the 95% credibility intervals not encompassing the true J-factor) when the object is mildly triaxial (axis ratios b/a = 0.8, c/a = 0.6). A concluding table summarises the typical error budget and biases for the different sample sizes considered.Comment: 21 pages, 20 figures. Minor changes (several clarifications): match the MNRAS accepted versio

    Iodine and pregnancy – a UK cross-sectional survey of dietary intake, knowledge and awareness

    Get PDF
    Iodine is a key component of the thyroid hormones, which are critical for healthy growth, development and metabolism. The UK population is now classified as mildly iodine-insufficient. Adequate levels of iodine during pregnancy are essential for fetal neurodevelopment, and mild iodine deficiency is linked to developmental impairments. In the absence of prophylaxis in the UK, awareness of nutritional recommendations during pregnancy would empower mothers to make the right dietary choices leading to adequate iodine intake. The present study aimed to: estimate mothers' dietary iodine intake in pregnancy (using a FFQ); assess awareness of the importance of iodine in pregnancy with an understanding of existing pregnancy dietary and lifestyle recommendations with relevance for iodine; examine the level of confidence in meeting adequate iodine intake. A cross-sectional survey was conducted and questionnaires were distributed between August 2011 and February 2012 on local (Glasgow) and national levels (online electronic questionnaire); 1026 women, UK-resident and pregnant or mother to a child aged up to 36 months participated in the study. While self-reported awareness about general nutritional recommendations during pregnancy was high (96 %), awareness of iodine-specific recommendations was very low (12 %), as well as the level of confidence of how to achieve adequate iodine intake (28 %). Median pregnancy iodine intake, without supplements, calculated from the FFQ, was 190 μg/d (interquartile range 144–256μg/d), which was lower than that of the WHO's recommended intake for pregnant women (250 μg/d). Current dietary recommendations in pregnancy, and their dissemination, are found not to equip women to meet the requirements for iodine intake

    Counters Counting in Any Code. EUR 3268.

    Get PDF

    Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy

    Full text link
    The dwarf spheroidal galaxies (dSph) of the Milky Way are among the most attractive targets for indirect searches of dark matter. In this work, we reconstruct the dark matter annihilation (J-factor) and decay profiles for the newly discovered dSph Reticulum II. Using an optimized spherical Jeans analysis of kinematic data obtained from the Michigan/Magellan Fiber System (M2FS), we find Reticulum II's J-factor to be among the largest of any Milky Way dSph. We have checked the robustness of this result against several ingredients of the analysis. Unless it suffers from tidal disruption or significant inflation of its velocity dispersion from binary stars, Reticulum II may provide a unique window on dark matter particle properties.Comment: 5 pages, 4 figures. Match the ApJL accepted versio

    Structure of Polyelectrolytes with Mixed of Monovalent and Divalent Counterions: Poisson-Boltzmann Analysis and SAXS Measurements

    Get PDF
    International audienceWe have studied by Small Angle X Ray Scattering (SAXS) the structure of salt free polyelectrolytes solutions containing monovalent and divalent counterions. We have considered mixtures of sulfonated polystyrene with monovalent (Na+) and divalent (Ca2+) counterions and measured the position of the scattering peak, q*, as a function of the monomer concentration cp and the monovalent / divalent content. The aim is to understand the variations observed in q* position when the valence of the counterions is gradually increased. This work is a continuation of a previous study in which first measurements were performed on a rather small number of sodium-PSS / calcium-PSS mixtures. In the present work, we used synchrotron radiation improved the quality of the data and varied the monovalent / divalent ratio with a much finer step. Indeed this gives new interesting results in the ranges of low and large divalent content. We analyzed SAXS results through the isotropic model and scaling approach description introduced by de Gennes et al. and developed by Dobrynin et al.. In this model, one key parameter is the chemical charge and / or the effective charge fraction feff of the polyions. Although the chemical charge fraction f of sodium-PSS and calcium-PSS polyelectrolyte is fixed by the synthesis, the effective charge fraction in mixtures varies with the monovalent / divalent ratio. This quantity has been calculated using the resolution of the Poisson-Boltzmann (PB) equation in the frame of the cell model for various monovalent / divalent contents and different concentrations. Severe deviations can be found in the effective charge values of mixtures at finite concentrations compared to the classical Manning-Oosawa prediction (infinite dilution limiting law). We demonstrate that the evolution of q* is still compatible with the isotropic model and the scaling approach in the low concentration range provided that the divalent content is not too high. In particular, a power law relation q * ~ f eff~ 0.3 can be found which looks very close to the one observed for weakly charged polyelectrolytes ( q*~ f 2 / 7 in good solvent or q*~ f 1/ 3 in theta solvent). Mixtures finally provide a way to adjust the effective charge fraction without changing the chemical nature of the polyions. However this procedure gives improvement of data prediction only in a limited range; it is still not able to fully explain the high concentration range, as well as the high divalent content mixtures. This is certainly due to the fact that the PB equations are not able to take into account the local interactions between monomers and divalent counterions, which goes beyond the mean field approach

    Dark matter annihilation and decay in dwarf spheroidal galaxies: The classical and ultrafaint dSphs

    Full text link
    Dwarf spheroidal (dSph) galaxies are prime targets for present and future gamma-ray telescopes hunting for indirect signals of particle dark matter. The interpretation of the data requires careful assessment of their dark matter content in order to derive robust constraints on candidate relic particles. Here, we use an optimised spherical Jeans analysis to reconstruct the `astrophysical factor' for both annihilating and decaying dark matter in 21 known dSphs. Improvements with respect to previous works are: (i) the use of more flexible luminosity and anisotropy profiles to minimise biases, (ii) the use of weak priors tailored on extensive sets of contamination-free mock data to improve the confidence intervals, (iii) systematic cross-checks of binned and unbinned analyses on mock and real data, and (iv) the use of mock data including stellar contamination to test the impact on reconstructed signals. Our analysis provides updated values for the dark matter content of 8 `classical' and 13 `ultrafaint' dSphs, with the quoted uncertainties directly linked to the sample size; the more flexible parametrisation we use results in changes compared to previous calculations. This translates into our ranking of potentially-brightest and most robust targets---viz., Ursa Minor, Draco, Sculptor---, and of the more promising, but uncertain targets---viz., Ursa Major 2, Coma---for annihilating dark matter. Our analysis of Segue 1 is extremely sensitive to whether we include or exclude a few marginal member stars, making this target one of the most uncertain. Our analysis illustrates challenges that will need to be addressed when inferring the dark matter content of new `ultrafaint' satellites that are beginning to be discovered in southern sky surveys.Comment: 19 pages, 14 figures, submitted to MNRAS. Supplementary material available on reques
    • …
    corecore